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Summary

Aerodynamic equations with nonlinear unsteady effects were formulated for an aircraft in a one-

degree-of-freedom large amplitude motion about each of its body axes.  The corresponding

aerodynamic models were expressed in the form of indicial functions.  The model formulation

separated the resulting aerodynamic forces and moments into static terms, purely-rotary terms and

unsteady terms.  For model identification from experimental data it was assumed that the static and

purely-rotary terms were known.  The model identification procedure developed combines a stepwise

regression and maximum likelihood estimation in a two-stage optimization algorithm which can

identify the unsteady term and also rotary term if necessary.

The identification scheme was applied to oscillatory data in pitch for two examples.  The first

example used the simulated data of a tailless aircraft, the second wind tunnel oscillatory data of the F-

16XL aircraft.  The results from both examples indicated that the two-stage optimization algorithm

can converge to maximum likelihood estimates.  The identified model from experimental data fit the

data well, however, the accuracy of some of the estimated parameters was rather low, around 10%.

The identified model was a good predictor for oscillatory data and data with ramp input.

Symbols

  
A B jj j, , , ,= 1 2 K spline terms

a ba a( ) ( ), 1 polynomials in a

  
a jj , , , ,= 0 1 2 K coefficients in a(a)

b wing span, m

b1 indicial function parameter, sec-1

  
b j

j1 0 1 2, , , ,= K coefficients in b1(a), sec-1

Ca general aerodynamic coefficient

CL, Cm lift and pitching-moment coefficient
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C t C t

C t C t

C t

a a

a a

a

q

p

r

a

b

( ) ( )

( ) ( )

( )

, ,

, , indicial functions

c mean aerodynamic chord, m

  
c j mj , , , ,= 0 1 K coefficients in h t;a( )

D operator, D d dt= -,sec 1

F(t; a) model of deficiency function

F t F t

F t F t

a a

a aq

a b

y

( ) ( )

( ) ( )

, ,

, deficiency functions

h t;a( ) sum of exponential functions, eq. (5)

k reduced frequency,  k V= wl

  l characteristic length,   l = c 2  or   l = b 2 , m

m number of exponentials in h t;a( )

n number of data points

p, q, r roll, pitch and yaw rate, rad/sec

t time, sec

V airspeed, m/sec

v i( ) measurement noise at time (i - 1) Dt

y variable defined by eq. (12)

z variable defined by eq. (25)

a angle of attack, rad or deg

b sideslip angle, rad

D increment

e equation error

x dummy integration variable
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t time delay, sec

f roll angle, rad

y yaw angle, rad

w angular frequency, rad/sec

Superscript:

× time derivative

Subscript:

E measured value

o nominal value

Abbreviation:

ML maximum likelihood

SR stepwise regression

SNR signal to noise ratio

Aerodynamic derivatives:

C C
C
aA A
A

a a
¥( ) = =

¶
¶

,  for A D L Y m n= , , , , ,l or 

for a p q r or= , , , , ,   a a b bÇ Ç

and for a
pb
V

qc
V

rb
V

c
V

b
V

=
2 2 2 2 2

, , , ,
Ç

, ,
Ç

a
a

b
b

 or 

Introduction

One of the first attempts to obtain unsteady aerodynamic characteristics of an aircraft from

experimental data was reported in reference 1.  Aerodynamic models included additional state
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variables to those defining aircraft motion.  These additional variables were used in defining unsteady

effects.  Experimental data came from wind tunnel and flight tests, parameter estimation used the

ordinary least squares.  Further improvements to modeling and parameter estimation procedures

followed and are presented in references 2 and 3.  Similar approaches to model formulation and data

analysis by other authors can be found in referencesÊ4 and 5.

References 6 to 8 present formulations of aerodynamic model equations in terms of indicial

functions.  The first of these references includes a method based on Fourier analysis of wind tunnel

data from large amplitude oscillatory motion and motion generated by a ramp input.  Estimation of

parameters in references 7 and 8 was limited to models with linear aerodynamics.  A different

approach from the previous two is given in reference 9.  The aerodynamic coefficients are specified

as nonlinear functions of the motion variable and its rate of change.  At the same time all the

parameters in the model are considered as functions of frequency.

In this report, the approach of references 7 and 8 towards modeling and parameter estimation is

extended to cases with nonlinear unsteady aerodynamics.  After the introduction, the report presents a

development of mathematical models of an aircraft performing a one degree-of-freedom motion

about one of the body axes.  The models developed are then used in parameter estimation with

simulated and real wind tunnel data from oscillatory tests in pitch.  The problem of selection or

determination of a specific model structure prior to parameter estimation is also discussed.  The

estimation methods are based on the least squares and maximum likelihood principles.  Final models

are assessed as to their ability to fit the measured data and predict the aircraft motion.  The report is

completed by concluding remarks.

Postulated Models

In this section mathematical models of an aircraft performing a one degree-of-freedom (d.o.f.)

motion about each of the three body axes will be developed.  These models will be applicable to

aircraft harmonic motion, response to a ramp input or any other form of a single input.
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Motion in Pitch

For a one d.o.f. motion in pitch, the fundamental relations for the drag, lift and pitching moment

are

C t C t q t a D L ma a( ) = ( ) ( )( ) =a , , ,          ,  or 

Using the results of reference 10, each of the aerodynamic coefficients can be formulated as

  

C t C C t q d

V
C t q q d

a a a

t

a

t

q

( ) = ( ) + - ( ) ( )( ) ( )

+ - ( ) ( )( ) ( )

ò

ò

0

0

0

a
t a t t a t t

t a t t t t

; , Ç

; , Ç

   

    
l

(1)

where Ca 0( ) is the value of the coefficient at initial steady-state conditions, C t qaa
t a t t- ( ) ( )( ); ,  and

C t qaq - ( ) ( )( )t a t t; ,  are the indicial functions representing the change in the coefficient Ca due to

the unit step in a and q respectively. The indicial responses are functions of elapsed time, t - t, and

are continuous single-valued functions of a(t) and q(t). The indicial functions approach steady-state

values with increasing values of the argument t - t. To indicate this property, each indicial function

can be represented as

C t q C q F t qa a aa a a
t a t t a t t t a t t- ( ) ( )( ) = ¥ ( ) ( )( ) - - ( ) ( )( ); , ; , ; ,   

and (2)

C t q C q F t qa a aq q q
- ( ) ( )( ) = ¥ ( ) ( )( ) - - ( ) ( )( )t a t t a t t t a t t; , ; , ; ,   

where C qaa
a t t¥ ( ) ( )( ); ,  is the rate of change of the coefficient Ca with a(t) and q(t), evaluated at

the instantaneous value of a(t) with q fixed at the instantaneous values of q(t). A similar definition

applies for C qaq ¥ ( ) ( )( ); , . a t t  The functions Faa
 and Faq  are called deficiency functions.

When equations (2) are substituted in equation (1), the terms involving the steady-state parameters

can be integrated and equation (1) becomes
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C t C t q t F t q d

V
F t q q d

a a a

t

a

t

q

( ) = ¥ ( ) ( )( ) - - ( ) ( )( ) ( )

- - ( ) ( )( ) ( )

ò

ò

; , ; , Ç

; , Ç

    

      

a t a t t a t t

t a t t t t

a

0

0

l
(3)

where C t q ta ¥ ( ) ( )( ); , a  is the total aerodynamic coefficient that would correspond to steady flow with

a and q fixed at the instantaneous values of a(t) and q(t).

Further simplification of equation (3) can be achieved by expanding the terms in this equation in

Taylor series about q = 0, taking into account only linear terms and neglecting terms in Çq , Çqq  and

Ç .aq  Then

  

C t C t
V
C t q t

F t d

a a a

a

t

q
( ) = ¥ ( )( ) + ¥ ( )( ) ( )

- - ( )( ) ( )ò

; , ; ,

; , Ç

   

    

a a

t a t a t t
a

0 0

0

0

l

(4a)

or in simple notation

C t C
V
C q t F t da a a a

t

q
( ) = ( ) + ( ) ( ) - - ( )( ) ( )òa a t a t a t t

a

l
    

0

; Ç (4b)

The deficiency function will be considered in the form

F t h t a; ;a a a( ) = ( ) ( ) (5)

where a(a) is a polynomial in a, h(t; a) represents a sum of exponential functions

h t c ej
b t

j

m
j;a

a( ) =
( )

=
å  

-

0

and bj a( ) are again polynomials in a. For further analysis, however, only two forms of h(t;a) will be

considered leading to the following deficiency functions

F t e ab t;a a( ) = ( )- 1 (6)
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and

F t e ab t;a aa( ) = ( )- ( )1 (7)

When the differential operator, D = d/dt, is introduced and operator notation used, the convolution

integrals with two forms of deficiency function can be expressed as

e a d
a
D b

D tb t
t

- -( ) ( )( ) ( ) =
( )
+

( )ò 1

10

t a t a t t
a

aÇ (8)

and

e a d
a

D b
D tb t t

t
- -( )( ) -( ) ( )( ) ( ) =

( )
+ ( )

( )ò 1

10

a t t a t a t t
a

a
aÇ (9)

Incorporating equation (8) into the operational form of equation (4) and recognizing that for one

d.o.f. motion in pitch q = Ça  results in

  
C t C

V
C D t

a

D b
D ta a aq( ) = ( ) + ( ) ( ) -

( )
+

( )a a a
a

a
l

1
(10)

Multiplication of both sides of equation (10) by (D + b1) yields

  

DC t b C t DC b C
V
DC D t

b
V
C a D t

a a a a a

a

q

q

( ) + ( ) = ( ) + ( ) + ( ) ( )

+ ( ) - ( )é
ëê

ù
ûú

( )

1 1

1

  

 

a a a a

a a a

l

l (11)

Equation (11) can be considered as a postulated form for model identification, i.e. for model

structure determination and parameter estimation. By examining equation (11), however, it is

apparent that from measured time histories Ca(t), a(t) and their derivatives it is not possible to

estimate explicitly parameter b1 and the remaining parameters in Ca(a), Caq a( ) , and a(a). To avoid

this problem, it will be further assumed that

a) Ca(a) is known from static measurements,
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b) Caq a( )  is estimated from small amplitude oscillatory data using techniques introduced in

reference 8.

Combining time histories Ca(t) with those of Ca(a) and 
  
l V C taq( ) ( ) ( )  a aÇ , a new variable y can be

introduced as

  
y t C t C

V
C ta a aq( ) = ( ) - ( ) - ( ) ( )a a a

l
 Ç (12)

or, by using equations (4) and (6) as

y t e a db t
t

( ) = - ( )( ) ( )- -( )
ò 1

0

t a t a t t   Ç (13)

Equation (13) in operator notation will represent Model I as

y t
a

D b
D t( ) = -

( )
+

( )
a

a
1

(14a)

which is equivalent to

Ç Çy t b y t a t( ) + ( ) = - ( ) ( )1 a a (14b)

The second model considered incorporates dependency of the parameter b1 on the angle of attack.

Equation (13) takes more general form (see Appendix A) as

y t e a d
b dt
t

( ) = - ( )( ) ( )
- ( )( )ò

ò
1

0

a x x
t a t a t t

 
  Ç (15)

Model II is then defined as

y t
a

D b
D t( ) = -

( )
+ ( )

( )
a

a
a

1
(16a)

or

Ç Çy t b y t a t( ) + ( ) ( ) = - ( ) ( )1 a a a  (16b)
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Motion in Roll and Yaw

For a one d.o.f. motion in roll at a constant value of the angle of attack, a0, the relations for the

lateral aerodynamic coefficients are

  
C t C t p t a Y na a( ) = ( ) ( )( ) =f , ; , ,       or l

where the roll angle is related to the sideslip angle by the equation

b f a= ( )-sin sin sin1
0 (17)

The aerodynamic coefficients can be formulated as

C t C C t p d

V
C t p p d

a a a

t

a

t

p

( ) = + - ( ) ( )( ) ( )

+ - ( ) ( )( ) ( )

ò

ò

( ) ; , Ç

; , Ç

0

0

0

b
t b t t b t t

t b t t t t

   

   
l

(18)

If the procedure illustrated for the motion in pitch is followed, equation (18) will be simplified as

C t C t
V
C t p t

F t d

a a a

a

t

p
( ) = ¥ ( )( ) + ¥ ( )( ) ( )

- - ( )( ) ( )ò

; , ; ,

; , Ç

   

   

b b

t b t b t t
b

0 0

0

0

l

(19)

where C ta ¥ ( )( ), ,b 0  is the total aerodynamic coefficient that would correspond to steady flow at a

fixed value of a and with b fixed at the instantaneous value of b(t), and C tap ¥ ( )( ), ,b 0  is the rate of

change of the coefficient Ca with p(t) evaluated at fixed value of a and instantaneous value of b(t).
Fab

 is the deficiency function which might take the form of equation (5).

Similarly, for a one d.o.f. motion in yaw at a constant value of a, the relations for the lateral

coefficients are

    C t C t r t a Y na a( ) = ( ) ( )( ) =y , ; ,     or l 

where the yaw angle is related to the sideslip angle as
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b y a= -( )-sin sin cos1
0 (20)

The simplified model for the coefficients takes the form

  

C t C
V
C r t F t da a a a

t

r
( ) = ( ) + ( ) ( ) - - ( )( ) ( )òb b t b t y t t

y

l
     

0

; Ç (21)

where the definitions of terms in (21) are similar to those for terms in equation (19).

Model Identification

Model structure determination and parameter estimation will be demonstrated on model equation

(16) governing a one d.o.f. motion in pitch. Modifications to less complicated model (14) or models

for a one d.o.f. motion in roll and yaw can be easily made. Substituting measured values at

  t i ni , , , , ,= 1 2 K  into equation (16b) gives

Ç Çy i b i y i a i i iE E E E E y( ) = - ( )( ) ( ) + ( )( ) ( )[ ] + ( )1 a a a e  (22)

where index E indicates the measured values, ey(i) is an equation error at time (iÊ-Ê1) Dt and Dt is the

sampling interval. Equation (22) is the regression equation with the unknown parameters in

polynomials b1(a) and a(a). The mean values of these parameters can be estimated by a least squares

technique. The parameter covariance matrix under the assumption of colored noise can be obtained

from expressions in reference 11.  In order to avoid differentiation of measured data an approach of

reference 12 using modulating functions can be applied.

For estimation of parameters in equation (22) a structure of both polynomials b1(a) and a(a)

must be either known or determined from experimental data. The structure of a(a) can be selected

from results of the small amplitude oscillatory data analysis as indicated in reference 8. If either the

structure of b1(a) or structures of both terms, b1(a) and a(a), are not known, a stepwise regression

can be applied to model structure determination and parameter estimation (see e.g. ref. 13).

The least squares parameter estimates can be updated by a maximum likelihood estimation

method outlined in reference 11. The constraint equations are the state and measurement equations
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of the form

Ç Ç ;y t b y t a t y t yE( ) = - ( ) ( ) - ( ) ( ) =( ) = ( )1 0 0a a a     (23)

  y i y i v i i nE ( ) = ( ) + ( ) =, , , ,   1 2 K (24)

where v(i) is the measrement noise at time (iÊ-Ê1) Dt.

In some cases the model for Caq a( )  may not be known. Then the parameters in b1(a) and a(a)

will be estimated for some a priori values of Caq a( ) . Returning to equations (12) and (15), a new

variable z(t) can be formed as

  

z t C t C e a d

V
C t

a a
b d

t

aq

( ) = ( ) - ( ) + ( ) ( )

= ( ) ( )

- ( )( )òa a a t t

a a

a x x1

0

 
  

 

Ç

Çl
(25)

When the measured values, and parameter estimates in b1 a( )  and a(a) are substituted into (25) the

regression equation is obtained as

  
z i

V
C i i i i nE a E E zq

( ) = ( )( ) ( ) + ( ) =
l

Ka a e    Ç , , , ,1 2 (26)

Based on equation (26), the model structure of Caq a( )  can be determined and parameters in that

model estimated. In the following step the parameters in b1(a) and a(a) can be estimated again, this

time for the new model of Caq a( )  and new values of yE(i) computed from equation (12). This two-

stage optimization procedure can be repeated until the minimum of the cost function for the

maximum likelihood estimator is reached. A block diagram for the two-stage estimation procedure is

presented in figure 1.

Examples

The procedure for identifying a nonlinear unsteady aerodynamic model of an aircraft subjected to

one d.o.f. harmonic motion about one of its body axes is demonstrated in two examples. Both

examples use data from pitch oscillations only. In the first example, the methodology is applied to
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simulated data representing the pitching moment coefficient of a tailless aircraft. In the second

example, wind tunnel data from a 10-percent-scale model of the F-16XL aircraft are used. A three-

view of this model is shown in figure 2 together with some of the basic dimensions. Static and

dynamic tests were conducted in the NASA Langley 12-Foot Low-Speed Wind Tunnel. A brief

description of the test is given in referenceÊ8.

Example 1

The purpose of this example is to demonstrate the feasibility of the algorithm to estimate

parameters in the model with a given structure. In addition, the effect of measurement and modeling

errors on the estimates will be investigated. The time histories of the pitching moment were computed

from equations (4), (6) and (7), and data in table I for Model I and Model II. The expressions for

b1(a) and a(a) were postulated as splines of the form

a a a a Aj
j

ja a a a a( ) = + + + -( )
= +
å0 1 2

2

1

2 2
(27)

and

b b Bj
j

j1 10
1

4
a a a( ) = + -( )

= +
å (28)

where aj are knots and (a - aj)+ are the plus functions defined as (a - aj)+ = 0, for a aj <  and

(a - aj)+ = -a a j , for a aj ³ .

The plots of the data in table I are presented in figure 3. Both the nominal value and amplitude of

the angle of attack oscillations were selected as 35 deg, and the three frequencies of the oscillatory

motion were 0.25, 0.50 and 1.00 Hz. The sampling interval was 0.01 sec. The variation of the

pitching moment and its components with the angle of attack is shown in figure 4. The time histories

of y and Çy  are plotted in figure 5 for three cycles of each frequency. A zero-mean, Gaussian and

white random sequence representing the measurement noise was added to the computed values of Çy .

The variance of this sequence was defined by the signal-to-noise ratio (SNR).

The effect of measurement noise on the ML estimates of b1 and five parameters in a(a) is shown
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in table II. The increase of noise level, SNR changed from 40 to 20, resulted in expected increase of

errors in estimated parameters, and in the fit error, s(n). The differences between parameter true and

estimated values, however, remain within the 2s-confidence intervals. In table III the effect of

modeling error in b1 is demonstrated. Replacing the spline b1(a) by a constant led to a large fit error

and large errors of parameters in a(a). The results in table III further indicate that even for correct

structure of b1(a), the parameters were, in general, estimated with low accuracy. Finally, in tableÊIV

the results of two-stage optimization are shown. The parameter estimation started with an incorrect

model for Cmq a( )  by replacing the second-degree polynomial by a known constant. Then model

structure determination and parameter estimation procedures were applied to identify a model for

Cmq a( )  in regression equation (26). As indicated in table IV, after three iterations the identified

model forCmq a( )  was very close to the true one. The remaining parameter estimates were also close

to their true values.

Example 2

The measured static and oscillatory data used in this example are shown in figure 6 as CL(a),

Cm(a), CL(a; a0, aA, k), and Cm(a; a0, aA, k) where a0 =Ê35 deg, aAÊ=Ê35 deg and kÊ=Ê0.034, 0.057,

0.1013 and 0.1350.  For the wind tunnel speed VÊ=Ê17.52 m/sec and c = 0 753.  m, the corresponding

frequencies were fÊ=Ê0.25, 0.42, 0.75 and 1.00 Hz.  Each of the four time histories of the oscillatory

data were comprised of three cycles with the sampling rate of 100 Hz.  The time histories of

measured data were obtained as the average values from five repeated runs at the same amplitude and

frequency.  The variability of averaged data in cycles was, in general, very low.  Some scatter

appeared in the stall region of the pitching-moment coefficient as can be seen in figure 7, where the

data from three repeated cycles are shown.  The analytical forms of static data were obtained by

fitting the measured CL(a) and Cm(a) curves.  For the a priori values of two damping terms, CLq
(¥;a)

and Cmq
(¥;a), the estimates from small-amplitude oscillatory data of reference 8 were used and

reformulated as
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CLq ¥( ) = - <

= - + - <

; . deg

. . . deg

a a

a a a

0 424 20

2 0 5 7 3 4 202

                                for  

          for  

and

Cmq ¥( ) = - - +; . . .a a a1 245 0 3806 1 5557 2

The models for the polynomials a(a) and b1(a) were postulated as polynomial splines given by

equation (27) and (28) with two knots in each expression.  The variable yE was computed from

equation (12), its derivative was obtained by numerical differentiation.

After two iterations of the two-stage optimization algorithm the identified models for the

polynomials a(a) and b1(a) were

a a a Aj
j

ja a a a( ) = + + -( )
= +
å1 2

1

2 2
(29)

b b b Bj j
j

1 0 1
1

2
a a a a( ) = + + -( )+=

å (30)

for the coefficient CL(a) and

a a a a Aj
j

ja a a a a( ) = + + + -( )
= +
å0 1 2

2

1

2 2
(31)

b b1 10a( ) = (32)

for the coefficient Cm(a).

The ML estimates of model parameters in equations (29) to (32) and their standard errors (Cramer-

Rao bounds) are summarized in table V.  The standard error of estimated parameters varied between

4 to 11 percent indicating possible identification problems for some parameters in the model.  The

plots of polynomials a(a) and b1(a) are presented in figures 8 and 9.  The a priori and estimated

values of parameters in polynomials representing the variation of the damping terms Cmq  with the

angle of attack are shown in table VI.  The identified model had the same structure as its a priori
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counterpart, and the accuracy of the estimated parameters was between 3 to 13 percent.  As pointed

out in table VI the a priori model for CLq (¥;a) was not updated because of a small contribution of

the CLq  term to the lift.  The identified final models fit the measured data very well at all frequencies.

An example of measured and estimated coefficients is given in figure 10 for the reduced frequency

kÊ=Ê0.057.

The identified models were also assessed by their prediction capabilities.  The predicted time

histories of CL and Cm were computed from equation (4b) for selected amplitude and frequency of

the oscillatory motion or for the ramp input in the angle of attack at different rates.  A comparison of

measured and predicted coefficients CL(a) and Cm(a) for two different amplitudes and similar

frequencies is given in figures 11 and 12.  Figures 13 and 14 present a comparison of the same

coefficients for two different ramp inputs versus a.  The same data in the form of time histories are

shown in figures 15 and 16.  The results in figures 11 to 16 indicate that the identified models are

good predictors for the lift coefficient, while some discrepancies between measured and predicted

data can be seen in the pitching-moment oscillatory data with the amplitude of 20 deg and the ramp

data.

Concluding Remarks

Aerodynamic equations with nonlinear unsteady effects were formulated for an aircraft in a one-

degree-of-freedom large amplitude motion about each of its body axes.  The corresponding

aerodynamic models were expressed in the from of indicial functions. The model formulation

separated the resulting aerodynamic forces and moments into static terms, purely-rotary terms and

unsteady terms.  The unsteady term in the model for a pitching motion was modeled as a product of

an exponential function and a polynomial in the angle of attack.  For model identification from

experimental data it was assumed that the static and purely-rotary terms were known.  The model

identification procedure developed combines stepwise regression and maximum likelihood

estimation.  In cases when the a priori information about the rotary term is in doubt, a two-stage

optimization algorithm which can identify both the unsteady and rotary terms were proposed.
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The identification scheme was applied to wind tunnel oscillatory data in pitch in two examples.

The first example used the simulated data for a tailless aircraft and the second used wind tunnel

oscillatory data from the F-16XL aircraft.  The results from both examples indicated that

1.  the two-stage optimization algorithm can converge to maximum likelihood estimates;

2.  the accuracy of estimated parameters can be severely degraded by modeling errors;

3.  the identified model from experimental data fit the data well, however, the accuracy of some of the
estimated parameters was rather low, around 10%;

4.  the identified model was a good predictor for oscillatory data and data with ramp input.
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Appendix A

Integral form of Model II

The following differential equation is considered

Ç Çy t b y t a t( ) + ( ) ( ) = - ( ) ( )1 a a a    (A1)

where b1(a) and a(a) are polynomials in a.  After multiplying each side (A1) by the exponential

term

e
b d
t

1
0
ò ( )( )a x x 

and rearranging, the following relationships is obtain

d
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Integration of both sides of (A2) results in
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Equation (A4) leads to the final form expressed as

y t e a d
b dt
t

( ) = - ( )( ) ( )
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ò
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  Ç (A5)



1 9

Table I. Characteristics of a tailless aircraft used in generating oscillatory data

C

C

a

m

mq

a a a a a

a a

a a a a

a

( ) = + - +

( ) = - +

( ) = + - + -( )

- -( )
+

+

0 42 0 34 0 40

2 0 8

0 28 3 2 8 0 4363

7 4 0 9599

2 3 4

2

2 2

2

. . .

.

. . .

. .

Model I:

b1Ê=Ê2.5

Model II:

 

b

V

1 2 5 5 73 0 349 5 73 0 5236

5 73 0 827 5 73 1 0472

0 02131

a a a

a a

( ) = - -( )+ + -( )+
+ -( )+ - -( )+

=

. . . . .

. . . .

. sec
l

 

Table II. Effect of measurement noise on estimated parameters.
Simulated data, Model I.

Estimate

Parameter True Value SNRÊ=Ê40 SNRÊ=Ê20

b1 2.5 2.503
(.0032)

2.500
(.0066)

a1 .28 .28
(.010)

.27
(.021)

a2 -3.2 -3.21
(.022)

-3.17
(.046)

A1 8.0 8.0
(0.44)

7.91
(.092)

A2 -7.4 -7.6
(.20)

-6.8
(.42)

s(n) Ñ .0041 .0085

Note: numbers in parentheses are Cramer-Rao bounds on standard
errors
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Table III. Effect of modeling errors in b1(a) on estimated
parameters.  Simulated data, Model II, SNRÊ=Ê40.

Estimate

Parameter True Value Model II Model I

b10 2.5 2.513
(.0069)

2.277
(.0056)

B1 -5.73 -5.9
(.12)

Ñ

B2 5.73 5.9
(.21)

Ñ

B3 5.73 5.8
(.28)

Ñ

B4 -5.73 -5.9
(.39)

Ñ

a1 .28 .26
(.013)

.67
(.021)

a2 -3.2 -3.16
(.029)

-4.25
(.047)

A1 8.0 7.92
(.059)

10.06
(.094)

A2 -7.4 -7.0
(.25)

-9.2
(.43)

s(n) Ñ .0045 .0087

Note: numbers in parentheses are Cramer-Rao bounds on standard
errors
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Table IV. Effect of modeling error in Cmq
a( )  on estimated

parameters.  Simulated data, Model I, SNRÊ=Ê40.

Estimate

Parameter
True
Value Cmq

 = -1.4
Cmq

a( )
estimated

b1 2.5 2.385
(.0071)

2.464
(.0033)

a1 .28 .55
(.022)

.32
(.010)

a2 -3.2 -3.62
(.050)

-3.26
(.023)

A1 8.0 8.49
(.099)

8.08
(.045)

A2 -7.4 -8.1
(.45)

-7.6
(.21)

s(n) Ñ .0092 .0042

Note: a) number in parentheses are Cramer-Rao bounds on
standard errors

b) initial value Cmq
 = -1.4

estimate after four iterations: Cmq
= - +1 939 0 804 2. . a

(.0043)(.0072)

true model: Cmq
= - +2 0 8 2. a
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Table V. Maximum likelihood estimates of parameters in a(a) and
b1(a) polynomial splines.

Parameter CL

CL knot
location
(degrees) Cm

Cm knot
location
(degrees)

a0 Ñ Ñ -0.52
(.054)

Ñ

a1 9.8
(.56)

Ñ 5.1
(.43)

Ñ

a2 -31.0
(1.4)

Ñ -9.7
(.69)

Ñ

A1 50.0
(2.3)

20 18.0
(1.2)

26

A2 -22.0
(2.5)

47.5 -11.0
(1.3)

46

b0 12.6
(.45)

Ñ 7.1
(.36)

Ñ

b1 -16.1
(.78)

Ñ Ñ Ñ

B1 49.0
(3.3)

45 Ñ Ñ

B2 -32.0
(4.5)

55 Ñ Ñ

con -0.14
(.018)

Ñ 0.07
(.010)

Ñ

s(n) .026 Ñ .012 Ñ

Note: (a) numbers in parentheses are Cramer-Rao bounds on 
standard errors.

(b) con is a constant added to the state equation.
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Table VI. A priori values and least-squares estimates of parameters in CLq ¥( );a
and Cmq ¥( );a .

CLq ¥( );a Cmq ¥( );a

Parameter
with aÊ<Ê20 deg a >Ê20 deg a priori estimated

a0 -0.424 -2.0 -1.245 -0.97
(.027)

a 0.0 5.7 -0.381 -0.76
(.098)

a2 0.0 -3.4 1.556 1.53
(.077)

Notes: (a) numbers in parentheses are Cramer-Rao bounds on standard errors.
(b) Cmq parameter estimates are obtained after two iterations.
(c) CLq was not updated due to its small contribution to CL.
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Figure 3.  Aerodynamic characteristics of tailless aircraft for simulated data examples.
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Figure 4.  Pitching-moment coefficient and its components in steady oscillatory motion at fÊ=Ê0.5ÊHz.  Simulated
data, (a) Model I, (b) Model II.
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Figure 5.  Time histories of dependent variable yE(t) and its derivative.  Simulated data, (a) Model I, (b)ÊModel II.
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Figure 7.  Data variability for wind tunnel measurements of pitching moment coefficient in steady oscillations for
three cycles.
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Figure 10.  Measured and estimated lift and pitching-moment coefficients.  kÊ=Ê0.057.
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Figure 11.  Measured and predicted lift coefficient at two amplitudes.
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Figure 12.  Measured and predicted pitching-moment coefficient at two amplitudes.
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Figure 13.  Measured and predicted lift coefficient at two input rates.
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Figure 14.  Measured and predicted pitching-moment coefficients at two rates.

Cm

Cm

a, deg

a, deg

q = 55 deg/sec

q = 165 deg/sec



3 7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

0 0.5 1 1.5 2

Figure 15.  Time histories of angle of attack and lift coefficient at two input rates.
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Figure 16.  Time histories of angle of attack and pitching-moment coefficients at two rates.
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